

Structure Elucidation of New Monordens Produced by *Humicola* sp. FO-2942

KAZUNOBU YAMAMOTO^a, HIROKO HATANO^a, MASAYOSHI ARAI^{a,b}, KAZURO SHIOMI^{a,b},
HIROSHI TOMODA^{a,b,c,*} and SATOSHI ŌMURA^{a,b,c,*}

^a Kitasato Institute for Life Sciences & ^b Graduate School of Infection Control Sciences,
Kitasato University, and ^c The Kitasato Institute
Minato-ku, Tokyo 108-8641, Japan

(Received for publication March 6, 2003)

Structures of three novel compounds designated monordens C to E, isolated from the fermentation broth of amidepsine-producing fungus *Humicola* sp. FO-2942, were elucidated by spectroscopic evidence. Monordens C is 6,7-dihydromonorden A. Monordens D and E lack the epoxide moiety of monordens C and B, respectively.

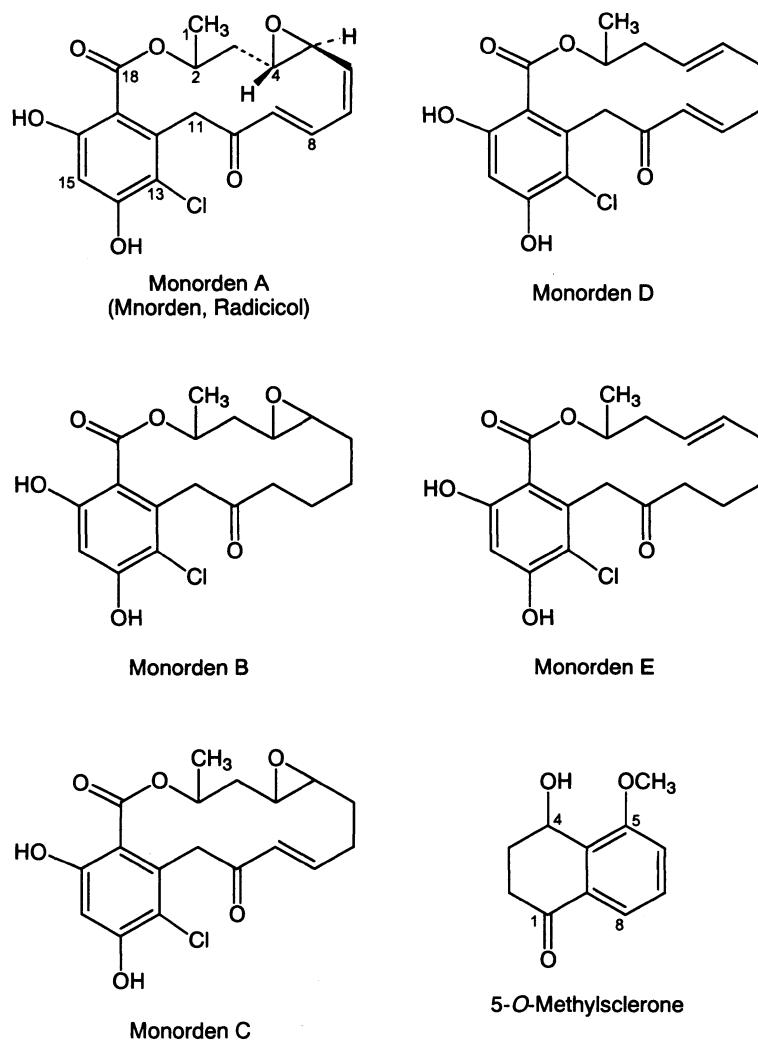
Humicola sp. FO-2942 was originally discovered as a producing fungus of amidepsines, inhibitors of diacylglycerol acyltransferase (DGAT)¹⁾. Ten compounds including amidepsines A to D were isolated from the culture broth as showing UV spectra similar to amidepsines by LC-UV analyses²⁾. Among them, three were identified as monorden^{3~6)} (radicicol, monorden A in this paper), its tetrahydro-derivative^{4,7)} (monorden B in this paper) and 5-*O*-methylsclerone⁸⁾, but the others are structurally related new compounds designated monordens C, D and E. Tetrahydromonorden (monorden B) and 5-*O*-methylsclerone were originally reported as synthetic compounds, but we showed that they are fungal metabolites²⁾. The structures of monorden A (**1**) to E (**5**) and 5-*O*-methylsclerone (**6**) are shown in Fig. 1. In this paper, we describe the structure elucidation of monordens C to E mainly done by NMR analysis. The detailed spectral data of monorden B and 5-*O*-methylsclerone is also reported here.

Results

Structure Determination

¹H- and ¹³C-NMR spectra of monorden A (**1**) were measured in CDCl₃ (data not shown), which were identical with those of monorden (radicicol) previously reported^{4~6)}. Physico-chemical properties and ¹H- and ¹³C-NMR data in CD₃OD of monordens B (**2**), C (**3**), D (**4**) and E (**5**) are

summarized in Tables 1, 2 and 3 together with those of **1** for comparative purpose. Monorden B (**2**) and 5-*O*-methylsclerone were reported as synthetic compounds.


Structure of Monorden C (**3**)

The molecular formula of the compound **3**, given yellowish amorphous powder, was established as C₁₈H₁₉O₆Cl on the basis of HRFAB-MS [*m/z* 365.0809 (M-H)⁺, 365.0792 for C₁₈H₁₈O₆Cl]. The UV spectrum of **3** showed maxima absorption, λ_{max} nm (ε, CH₃OH): 218 (27,200), 227 (sh, 20,900), 261 (6,900), 313 (4,800). These spectra resemble those of **1**, suggesting that **3** has structure related to **1**.

The ¹³C-NMR spectra of **3** in CD₃OD exhibited 18 carbon signals. Analysis of the ¹H-, ¹³C-NMR, DEPT and HMQC spectral data led to the existence of one doublet methyl, four methylene, three *sp*³ methine, three *sp*² methine, seven quaternary carbons. The ¹H-¹H COSY and HMBC spectra of **3** revealed a partial connection consisting of one methyl, three methylene, three *sp*³ methine and two *sp*² methine, which assigned the sequence from C-1 to C-9. Further structural elucidation was done through interpretation of the HMBC experiment of **3** as shown in Fig. 2. The ¹H-¹³C long-range couplings from 8-H (δ_{H} 7.02) to C-10 (δ_{C} 199.0), and from 9-H (δ_{H} 6.11) to C-10 and C-11 (δ_{C} 45.8), and from 11-H₂ (δ_{H} 4.59 and 4.36) to C-10 and C-9 (δ_{C} 132.0) gave the bond from C-9 to C-11 via C-10. The long-range couplings from 15-H (δ_{H} 6.46) to C-13 (δ_{C} 117.5), C-14 (δ_{C} 164.8), C-16 (δ_{C} 160.8) and C-

* Corresponding author: tomoda@lisci.kitasato-u.ac.jp or omura-s@kitasato.or.jp

Fig. 1. The structures of monorden A (1), B (2), C (3), D (4), E (5) and 5-*O*-methylsclerone (6).

17 (δ_C 108.2) suggested that **3** contains the pentasubstituted benzene moiety, because 15-H was only observed as a singlet in the low-field signal. The long-range couplings from 11-H to C-12 (δ_C 137.9), C-13 and C-17 indicated that C-12 is linked to C-11. The carbon chemical shifts for benzene moiety showed good agreement with those of **1**, suggesting that the corresponding part is 1,2-disubstituted 3-chloro-4,6-dihydroxybenzene. The long-range coupling through 4 bonds (4J) from 15-H to C-18 (δ_C 171.9) was observed, indicating that they are for 'W' configuration and that C-17 and C-18 are bonded. The geometrical isomerism of C-8 was determined as 'E' by the proton coupling constant of $J_{8,9}$ (16.0 Hz). Thus, the planer structure of **3** was elucidated as 8-chloro-1a,4,5,14,15,15a-hexahydro-9,11-dihydroxy-14-methyl-6*H*-

oxireno[*e*][2]benzoxacyclotetradecin-6,12(7*H*)-dione.

Structure of Monorden D (4)

The molecular formula of the compound **4**, given yellowish oil, was established as $C_{18}H_{19}O_5Cl$ on the basis of HRFAB-MS [m/z 351.0999 ($M+H$) $^+$, 351.1051 for $C_{18}H_{20}O_5Cl$]. The UV and IR of **4** were very similar to those of **1** and **3**.

The ^{13}C -NMR spectra of **4** in CD_3OD exhibited 18 carbon signals as well as those of **1** and **3**. The 1H - and ^{13}C -NMR spectra of **4** showed signals of the 1,2-disubstituted 3-chloro-4,6-dihydroxybenzene moiety (δ_C 162.7, 159.3, 137.1, 116.5, 109.6 and 103.9, δ_H 6.48), two carbonyl (δ_C 198.7 and 170.7) and methylene (δ_C 46.4, δ_H 4.23 and 4.11) between the substituted benzene and

Table 1. Physico-chemical properties of monordens A (1), B (2), C (3), D (4) and E (5).

	1	2	3
Appearance	Yellowish amorphous powder	Yellowish amorphous powder	Yellowish amorphous powder
MP	191°C	187°C	158°C
$[\alpha]_D^{26}$	+160.6° (c 0.1, in CHCl_3)	-9.8° (c 0.1, in CHCl_3)	-10.9° (c 0.4, in CHCl_3)
Molecular formula	$\text{C}_{18}\text{H}_{17}\text{O}_6\text{Cl}$	$\text{C}_{18}\text{H}_{21}\text{O}_6\text{Cl}$	$\text{C}_{18}\text{H}_{19}\text{O}_6\text{Cl}$
HRFAB-MS (m/z)			
Found	363.0636 ($\text{M}-\text{H}^+$)	391.0899 ($\text{M}+\text{Na}^+$)	365.0809 ($\text{M}-\text{H}^+$)
Calcd.	365.0635 (for $\text{C}_{18}\text{H}_{16}\text{O}_6\text{Cl}$)	391.0924 (for $\text{C}_{18}\text{H}_{21}\text{O}_6\text{ClNa}$)	365.0792 (for $\text{C}_{18}\text{H}_{18}\text{O}_6\text{Cl}$)
UV λ_{max} nm (MeOH)	215 (sh, 20,500), 263 (12,700), 315 (sh, 4,200)	217 (16,100), 231 (sh, 9,400), 261 (6,200), 312 (4,500)	218 (27,200), 227 (sh, 20,900), 261 (6,900), 313 (4,800)
IR ν_{max} (KBr) cm^{-1}	3421, 1656, 1604, 1435, 1354, 1305, 1241, 1093	3162, 2364, 1712, 1666, 1608, 1311, 1232, 1114, 837	3000, 2937, 1681, 1646, 1600, 1295, 1249, 1101
	4	5	
Appearance	Yellowish oil	Yellowish oil	
MP	84°C	89°C	
$[\alpha]_D^{26}$	+21.4° (c 0.1, in CHCl_3)	-22.7° (c 0.28, in MeOH)	
Molecular formula	$\text{C}_{18}\text{H}_{19}\text{O}_5\text{Cl}$	$\text{C}_{18}\text{H}_{21}\text{O}_5\text{Cl}$	
HRFAB-MS (m/z)			
Found	351.0999 ($\text{M}+\text{H}^+$)	353.1166 ($\text{M}+\text{H}^+$)	
Calcd.	351.1051 (for $\text{C}_{18}\text{H}_{50}\text{O}_5\text{Cl}$)	353.1156 (for $\text{C}_{18}\text{H}_{22}\text{O}_5\text{Cl}$)	
UV λ_{max} nm (MeOH)	218 (15,900), 232 (sh, 11,000), 256 (sh, 5,100), 311 (3,200)	217 (12,900), 232 (sh, 6,900), 262 (4,300), 311 (2,900)	
IR ν_{max} (KBr) cm^{-1}	3425, 2926, 1651, 1606, 1311, 1246, 1114, 1033	3425, 2925, 1708, 1650, 1608, 1309, 1241, 1116	

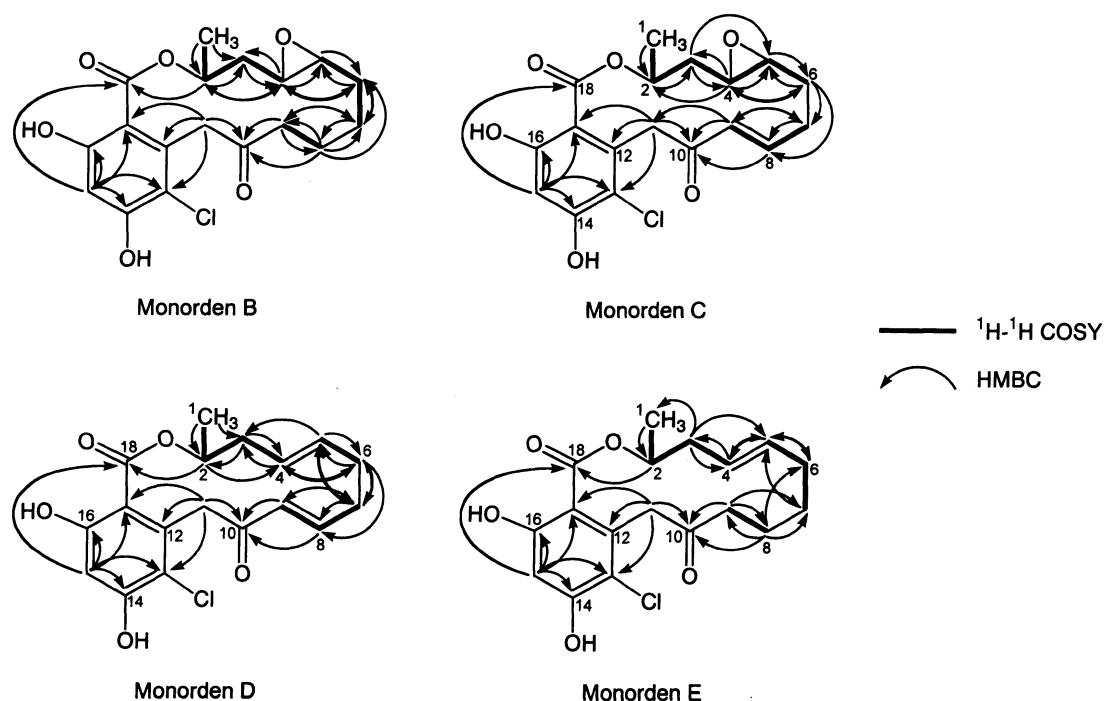
Table 2. The ^{13}C -NMR data of monordens A (1), B (2), C (3), D (4) and E (5) in CD_3OD .

Position	1 δ_{C} (ppm, J in Hz)	2 δ_{C} (ppm, J in Hz)	3 δ_{C} (ppm, J in Hz)	4 δ_{C} (ppm, J in Hz)	5 δ_{C} (ppm, J in Hz)
1	19.2 q	19.5 q	18.5 q	18.5 q	19.4 q
2	72.6 d	72.4 d	74.0 d	73.7 d	74.2 d
3	38.2 t	37.9 t	38.0 t	38.1 t	38.9 t
4	57.0 d	56.4 d	57.2 d	128.1 d	126.5 d
5	57.3 d	58.7 d	58.6 d	133.4 d	135.7 d
6	137.4 d a)	31.5 t	32.4 t	32.1 t	33.2 t
7	132.0 d a)	24.5 t	30.6 t	32.3 t	26.8 t
8	141.1 d a)	23.9 t	150.9 d	149.3 d	23.4 t
9	131.3 d a)	41.4 t	132.0 d	130.8 d	42.1 t
10	200.1 s	209.7 s	199.0 s	198.7 s	209.7 s
11	47.0 t	47.1 t	45.8 t	46.4 t	47.1 t
12	135.6 s	136.1 s	137.9 s	137.1 s	137.1 s
13	115.8 s	116.0 s	117.5 s	116.5 s	116.1 s
14	159.6 s	161.3 s	164.8 s	162.7 s	162.6 s
15	104.3 d	103.9 d	104.5 d	103.9 d	103.9 d
16	158.8 s	159.1 s	160.8 s	159.3 s	159.1 s
17	113.6 s	110.8 s	108.2 s	109.6 s	109.8 s
18	169.6 s	170.6 s	171.9 s	170.7 s	171.1 s

a) Assignments are interchangeable

Table 3. The ^1H -NMR data of monordens A (1), B (2), C (3), D (4) and E (5) in CD_3OD .

Position	1 δ_{H} (ppm, J in Hz)	2 δ_{H} (ppm, J in Hz)	3 δ_{H} (ppm, J in Hz)
1	1.51 d (3H, J = 6.6 Hz)	1.43 d (3H, J = 6.4 Hz)	1.46 d (3H, J = 6.5 Hz)
2	5.37 m (1H)	5.27 m (1H)	5.23 m (1H)
3	2.41 ddd (1H, J = 14.7, 3.4, 3.0 Hz) 1.72 ddd (1H, J = 14.7, 8.6, 3.9 Hz)	2.17 ddd (1H, J = 15.2, 6.9, 4.1 Hz) 1.77 m (1H)	2.04 br. dd (1H, J = 16.1, 3.4 Hz) 1.76 ddd (1H, J = 16.1, 4.8, 4.3 Hz)
4	3.05 ddd (1H, J = 8.6, 3.0, 2.2 Hz)	2.84 ddd (1H, J = 6.4, 4.3, 2.5 Hz)	2.88 m (1H)
5	3.33 m (1H)	2.71 ddd (1H, J = 8.7, 3.0, 2.5 Hz)	2.60 m (1H)
6	5.77 dd (1H, J = 10.7, 3.9 Hz)	2.00 m (1H) 1.20 m (1H)	2.37 m (1H) 1.26 m (1H)
7	2.54 ddd (1H, J = 10.7, 9.8, 1.5 Hz)	1.58 m (1H) 1.47 m (1H)	2.54 m (1H) 2.33 m (1H)
8	7.52 dd (1H, J = 16.9, 9.8 Hz)	1.58 m (1H) 1.77 m (1H)	7.02 ddd (1H, J = 16.0, 10.8, 4.4 Hz)
9	6.11 d (1H, J = 16.9 Hz)	2.56 m (1H) 2.50 m (1H)	6.11 dd (1H, J = 16.0, 1.4 Hz)
11	4.16 d (1H, J = 16.3 Hz) 3.92 d (1H, J = 16.3 Hz)	4.30 d (1H, J = 18.2 Hz) 4.20 d (1H, J = 18.2 Hz)	4.59 d (1H, J = 18.3 Hz) 4.36 d (1H, J = 18.3 Hz)
15	6.46 s (1H)	6.45 s (1H)	6.46 s (1H)


Position	4 δ_{H} (ppm, J in Hz)	5 δ_{H} (ppm, J in Hz)
1	1.29 d (3H, J = 6.4 Hz)	1.37 d (3H, J = 6.0 Hz)
2	5.31 m (1H)	5.31 m (1H)
3	2.54 m (1H) 2.24 m (1H)	2.50 m (1H) 2.31 m (1H)
4	5.28 m (1H)	5.48 m (1H)
5	5.23 m (1H)	5.48 m (1H)
6	2.17 m (2H)	2.08 m (2H)
7	2.28 m (1H) 2.15 m (1H)	1.55 m (1H) 1.47 m (1H)
8	6.72 ddd (1H, J = 15.2, 8.0, 7.0 Hz)	1.65 m (2H)
9	5.81 d (1H, J = 15.2 Hz)	2.52 m (2H)
11	4.23 d (1H, J = 16.0 Hz) 4.11 d (1H, J = 16.0 Hz)	4.37 d (1H, J = 17.0 Hz) 4.09 d (1H, J = 17.0 Hz)
15	6.48 s (1H)	6.46 s (1H)

the ketone, which are common to **1** and **3**. Analysis of the ^1H - ^{13}C -NMR, DEPT, and HMQC spectra revealed the presence of seven quaternary, six methine, four methylene, and one methyl carbons. Four partial structures, $\text{CH}_3\text{--CH}(\text{--O})\text{--}$, $\text{--CH}_2\text{--CH}=\text{}$, $=\text{CH--CH}_2\text{--}$, and $\text{--CH}_2\text{--CH=CH--}$, were shown by ^1H - ^1H -COSY. Their connection was analysed by HMBC (Fig. 2), indicating that **4** contains the olefin bonds between C-8 and C-9 and between C-4 and C-5. Further structural elucidation was also made by interpreting the HMBC experimental data (Fig. 2). Finally, the planar structure of **4** was elucidated as 13-chloro-3,4,7,8-tetrahydro-14,16-dihydroxy-3-methyl-1H-2-benzoxacyclotetradecin-1,11(12H)-dione.

Structure of Monorden E (5)

The molecular formula of the compound **5** was established as $\text{C}_{18}\text{H}_{21}\text{O}_5\text{Cl}$ on the basis of HRFAB-MS [m/z 353.1166 ($\text{M}+\text{H}$) $^+$, 353.1156 for $\text{C}_{18}\text{H}_{22}\text{O}_5\text{Cl}$], which is additional in two hydrogens compared with **4**. The UV and IR of **5** were very similar to those of **1**, **3** and **4**.

The NMR spectra of **5** were almost the same as those of **4** except C-7 (δ_{C} 26.8, δ_{H} 1.47 and 1.55), C-8 (δ_{C} 23.4, δ_{H} 1.65), and C-9 (δ_{C} 42.1, δ_{H} 2.52). Their alignment was elucidated by ^1H - ^1H -COSY, and ^1H - ^{13}C long-range couplings between $\text{H}_2\text{-6}$ (δ_{H} 2.08) and C-8, between $\text{H}_2\text{-7}$ and C-5 (δ_{C} 135.7), between H-8 and C-10 (δ_{C} 209.7), and between H-9 and C-10, suggesting that **5** is 8,9-dihydromorden D. Further structural elucidation was

Fig. 2. ^1H - ^1H COSY and HMBC correlations of monorden B (2), C (3), D (4) and E (5).

made by interpreting the HMBC experimental data as shown in Fig. 2. Finally, the planar structure of **5** was elucidated as 13-chloro-3,4,7,8,9,10-hexahydro-14,16-dihydroxy-3-methyl-1*H*-2-benzoxacyclotetradecin-1,11(12*H*)-dione.

Structure of Monorden B (2)

The molecular formula of the compound **2** was established as $\text{C}_{18}\text{H}_{21}\text{O}_6\text{Cl}$ on the basis of HRFAB-MS [m/z 391.0899 ($\text{M}+\text{Na}$) $^+$, 391.0924 for $\text{C}_{18}\text{H}_{21}\text{O}_6\text{ClNa}$], which is 2*H* larger than **3**. The UV and IR of **2** were very similar to those of **3**.

The ^{13}C -NMR spectra of **2** in CD_3OD exhibited 18 carbon signals as well as those of **3**. The ^1H - and ^{13}C -NMR spectra of **2** were almost the same as those of **3** except C7 (δ_{C} 24.5, δ_{H} 1.58 and 1.47), C8 (δ_{C} 23.9, δ_{H} 1.77 and 1.58), and C9 (δ_{C} 41.4, δ_{H} 2.56 and 2.50). The ^1H -, ^{13}C -NMR, DEPT and HMQC spectral data of **2** indicated the existence of one doublet methyl, six methylene, three sp^3 methine, one sp^2 methine and seven quaternary carbons, which were two more methylene and two less sp^2 methine than those of **3**. The connection from C-1 to C-10 via C-2, 9 was proved by ^1H - ^1H COSY and ^1H - ^{13}C long-range couplings, suggesting that **2** has additional two hydrogens at C-8 and

C-9 of **3**. Further structural elucidation was made by interpreting the HMBC experimental data as shown in Fig. 2. Finally, the structure of **2** was elucidated as 8-chloro-1*a*,2,3,4,5,14,15,15*a*-octahydro-9,11-dihydroxy-14-methyl-6*H*-oxireno[*e*][2]benzoxacyclotetradecin-6,12(7*H*)-dione.

Structure of 5-*O*-Methylsclerone (6)

The molecular formula of the compounds **6**, $[\alpha]_{D}^{26} -14.0^\circ$ (*c* 0.05, in CHCl_3); given yellowish oil, were established as $\text{C}_{11}\text{H}_{12}\text{O}_3$ on the basis of HREI-MS [m/z 192.0709 (M^+), 192.0786 for $\text{C}_{11}\text{H}_{12}\text{O}_3$]. The UV spectrum of **6** showed maxima absorption, λ_{max} nm (ϵ , CH_3OH): 226 (10,800), 258 (3,300), 318 (1,200). The IR spectrum of **6** showed absorption band, ν_{max} (KBr) cm^{-1} : 3382, 1681, 1384, 1211 and 1136.

The ^{13}C -NMR spectra of **6** in CDCl_3 exhibited 11 carbon signals. Analysis of the ^1H -, ^{13}C -NMR, DEPT and HMQC spectral data led to the existence of one singlet methyl (δ_{C} 55.8, δ_{H} 3.94), two methylene (δ_{C} 33.7, δ_{H} 2.99, 2.55; δ_{C} 29.4, δ_{H} 2.34, 2.31), one sp^3 methine (δ_{C} 62.2, δ_{H} 5.29), three sp^2 methine (δ_{C} 129.1, δ_{H} 7.39; δ_{C} 119.0, δ_{H} 7.65; δ_{C} 115.3, δ_{H} 7.12), one carbonyl (δ_{C} 198.0) and three aromatic quaternary (δ_{C} 157.0, 132.5, 132.3) carbons. The chemical shift of methyl, sp^3 methine and one aromatic quaternary

carbons suggested that **6** had three oxygenated carbons at δ_C 55.7, δ_C 62.2 and δ_C 157.0. The 1H -NMR data gave spin network system among C-6 (δ_H 7.12, $J=8.24, 1.10$ Hz), C-7 (δ_H 7.39, $J=8.24, 7.87$ Hz) and C-8 (δ_H 7.65, $J=7.87, 1.10$ Hz) as *ortho*- and/or *meta*-coupling on the benzene ring. Further structural elucidation was made by interpreting the HMBC experimental data for **6** (data not shown). Finally, the structure of **6** was determined as 2,3-dihydro-4-hydroxy-5-methoxy-1-naphthalenone.

Discussion

Analogs of monorden A (radicicol)³⁾ such as monocillins I to V⁹⁾, nordinone and nordinonediol¹⁰⁾ have been reported as fungal metabolites. Although most of them lack the residue, only monorden A and 13-chloro-6,7,8-dehydro-4-hydroxymonocillin IV¹¹⁾ possess the chlorine residue at C-13. As described in this paper, all the monordens isolated from the amidepsine producer were found to have the 13-chlorine residue in common. Monordens B, C, D and E correspond to 13-chlorinated monocillins III, V, II and IV, respectively. Monorden B^{4,7)} and 5-*O*-methylsclerone⁸⁾ were reported as synthetic compounds, but they were isolated as metabolites of this fungus.

Experimental

Spectral and physico-chemical data for monorden A to E and 5-*O*-methylsclerone were obtained by the following instruments: mp, Yanagimoto Micro Melting Point Apparatus MP-S3; IR, HORIBA FT-210; UV, HITACHI 340 Recording Spectrophotometer; Optical rotations, JASCO DIP-1000 Digital Polarimeter with a 5 cm cell; and NMR, Varian UNITY 400. FAB-MS data for monordens A to E were obtained by JOEL JSM-700 MS station, and EI-MS data for 5-*O*-methylsclerone was obtained by JOEL JSM-AX 505 HA. All NMR spectra for monorden A to E were measured in methanol-*d*₄, and peak positions are expressed in parts per million (ppm) based on the reference of methanol peak at δ 3.30 ppm for 1H -NMR and δ 49.0 ppm for ^{13}C -NMR. Monorden A were also measured in chloroform-*d*. All NMR spectra for 5-*O*-methylsclerone were also measured in chloroform-*d*, and peak positions are expressed in parts per million (ppm) based on the reference of chloroform peak at δ 7.24 ppm for 1H -NMR and δ 77.0 ppm for ^{13}C -NMR. All FAB-MS spectra were measured using 3-nitrobenzylalcohol and

thioglycerol for matrix.

Acknowledgments

We express our thanks to Ms. N. SATO, School of Pharmaceutical Sciences, Kitasato University, for measurement of NMR spectra.

This study was supported in part by the grand of the 21st Century COE Program, Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- 1) TOMODA, H.; M. ITO, N. TABATA, R. MASUMA, Y. YAMAGUCHI & S. ÔMURA: Amidepsins, inhibitors of diacylglycerol acyltransferase produced by *Humicola* sp. FO-2942. I. Production, isolation and biological properties. *J. Antibiotics* 48: 937~941, 1995
- 2) ARAI, M.; K. YAMAMOTO, I. NAMATAME, H. TOMODA & S. ÔMURA: New monordens produced by amidepsine-producing fungus *Humicola* sp. FO-2942. *J. Antibiotics* 56: 526~532, 2003
- 3) DELMOTTE, P. & J. DELMOTTE-PLAQUEE: A new antifungal substance of fungal origin. *Nature* 171: 344, 1953
- 4) MIRRINGTON, R. N.; E. RITCHIE, C. W. SHOPPEE, W. C. TAYLOR & S. STERNHELL: The constitution of radicicol. *Tetrahedron Lett.* 7: 365~370, 1964
- 5) MCCAPRA, F.; A. I. SCOTT, P. DELMOTTE, J. DELMOTTE-PLAQUEE & N. S. BHACCA: The constitution of monorden, an antibiotic with tranquilising action. *Tetrahedron Lett.* 15: 869~857, 1964
- 6) NOZAWA, K. & S. NAKAJIMA: Isolation of radicicol from *Penicillium luteo-aurantium*, and meleagrin, a new metabolite, from *Penicillium meleagrinum*. *J. Nat. Prod.* 42: 374~377, 1979
- 7) MIRRINGTON, R. N.; E. RITCHIE, C. W. SHOPPEE, S. STERNHELL & W. C. TAYLOR: Some metabolites of *Nectria radicicola* Gerlach & Nilsson (syn. *Cylindrocarpon radicicola* Wr.): The structure of radicicol (monorden). *Aust. J. Chem.* 19: 1265~1284, 1966
- 8) SUZUKI, K.; T. SASSA, H. TAMAKA, H. AOKI & M. NAMIKI: Sclerone, a new metabolite of *Sclerotinia sclerotiorum* (LIB) DE BARY. *Agr. Biol. Chem.* 32: 1471~1475, 1968
- 9) AYAR, W. A.; S. P. LEE, A. TSUNEDA & Y. HIRATSUKA: The isolation, identification, and bioassay of the antifungal metabolites produced by *Monocillium nordinii*. *Can. J. Microbiol.* 26: 766~773, 1980
- 10) AYAR, W. A. & P. R. LUIS: Minor metabolite of *Monocillium nordinii*. *Phytochemistry* 26: 1353~1355, 1987
- 11) WICKLOW, T. D.; B. K. JOSHI, W. R. GAMBLE, J. B. GLOER & P. F. DOWD: Antifungal metabolites (monorden, monocillin IV, and cerebrosides) from *Humicola fuscoatra* Traaen NRRL 22980, a mycoparasite of *Asperillus flavus* sclerotia. *Appl. Environ. Microbiol.* 64: 4482~4484, 1998